Kostenloser nPr und nCr Taschenrechner Online

Kostenloser nPr und nCr Taschenrechner online

NPR Permutations And NCR Combinations Calculator
Wert von N
Wert von R
Permutationen (N,R)
Kombinationen (N,R)
   

Kostenloser Binomialkoeffizienten Taschenrechner Online

Rechner für NPR-Permutationen und NCR-Kombinationen

N über K Taschenrechner

Kostenloser Binomialkoeffizienten Rechner Online

Permutationen und Kombinationen gehören zu einem Zweig der Mathematik, der als Kombinatorik bezeichnet wird und das Studium endlicher und diskreter Strukturen umfasst. Permutationen sind bestimmte Auswahlen von Elementen innerhalb einer Menge, bei denen die Reihenfolge, in der die Elemente organisiert sind, wichtig ist, während Kombinationen die Auswahl von Elementen unabhängig von der Reihenfolge beinhalten. Ein typischer Kombinationsblock sollte beispielsweise nach mathematischen Maßstäben technisch als Permutationsblock bezeichnet werden, da die Reihenfolge der eingegebenen Zahlen wichtig ist; 1-2-9 ist nicht dasselbe wie 2-9-1, während für eine Kombination jede Reihenfolge dieser drei Zahlen ausreichen würde. Es gibt verschiedene Arten von Permutationen und Kombinationen, aber der Rechner oben betrachtet nur den ersatzlosen Fall, auch ohne Wiederholung genannt. Dies bedeutet, dass für das Beispiel des vorherigen Zahlenschlosses

Permutationen nPr

Der bereitgestellte Rechner berechnet eines der typischsten Permutationskonzepte, bei dem die Bestimmungen einer festen Anzahl von Elementen r aus einer gegebenen Menge n entnommen werden. Im Wesentlichen kann dies als r-Permutationen von n oder Teilpermutationen bezeichnet werden, die unter anderem als nPrnPrP(n,r), or P(n,r) bezeichnet werden.

Bei ersatzlosen Permutationen werden alle möglichen Arten in Betracht gezogen, in denen die Elemente einer Menge in einer bestimmten Reihenfolge aufgelistet werden können. Die Anzahl der Optionen wird jedoch bei jeder Auswahl eines Elements verringert, anstatt in einem Fall wie z das „Kombinationsschloss“, bei dem ein Wert mehrmals vorkommen kann, z. B. 3-3-3. Wenn Sie beispielsweise versuchen, die Anzahl der Möglichkeiten zu bestimmen, mit denen ein Mannschaftskapitän und ein Torhüter einer Fußballmannschaft aus einer aus 11 Mitgliedern bestehenden Mannschaft ausgewählt werden können, können der Mannschaftskapitän und der Torhüter nicht dieselbe Person sein Einmal ausgewählt, muss es aus dem Set entfernt werden. Die Buchstaben von A bis K repräsentieren die 11 verschiedenen Mitglieder des Teams:

BCDEFGHIJK 11 Mitglieder; A wird als Kapitän gewählt

BCDEFGHIJK 10 Mitglieder; B wird als Torhüter gewählt

Wie Sie sehen, war die erste Option, dass A der Kapitän der ersten 11 Mitglieder war, aber da A nicht der Mannschaftskapitän oder Torhüter sein kann, wurde A vor der zweiten Wahl des Torhüters aus dem Satz gestrichen. B könnte getan werden. Die Gesamtmöglichkeiten, wenn jedes Mitglied der Teamposition angegeben würde, wären 11 × 10 × 9 × 8 × 7 × … × 2 × 1 oder 11 Fakultäten, geschrieben als 11! Da in diesem Fall jedoch nur der Mannschaftskapitän und der gewählte Torhüter von Bedeutung waren, sind nur die ersten beiden Optionen (11 × 10 = 110) relevant. Somit eliminiert die Gleichung zur Berechnung der Permutationen den Rest der Elemente 9 × 8 × 7 × … × 2 × 1 oder 9! Daher kann die verallgemeinerte Gleichung für eine Permutation wie folgt geschrieben werden:

nPr = n! / (n-r)!

112 = 11! / (1–2)! = 11! / 9! = 11 x 10 = 110​

Auch hier berechnet der bereitgestellte Rechner keine Permutationen mit Ersetzung, aber für die Neugierigen ist die folgende Gleichung vorgesehen:

nPr = nr

Kombinationen nCr

Die Kombinationen beziehen sich auf Permutationen in dem Sinne, dass es sich im Wesentlichen um Permutationen handelt, bei denen alle Redundanzen beseitigt sind (wie nachstehend beschrieben wird), da die Reihenfolge in einer Kombination nicht wichtig ist. Kombinationen, wie beispielsweise Permutationen, werden auf verschiedene Arten bezeichnet, einschließlich nCrnCrC(n,r), C(n,r) oder ​(n/r).

Wie bei Permutationen berücksichtigt der bereitgestellte Rechner nur den Fall von Kombinationen ohne Ersatz, und der Fall von Kombinationen mit Ersatz wird nicht erörtert. Verwenden Sie erneut das Beispiel einer Fußballmannschaft, um die Anzahl der Möglichkeiten für die Auswahl von 2 Stürmern aus einer 11-köpfigen Mannschaft zu ermitteln, dass Streikende gewählt werden, spielt keine Rolle, da beide Streikende sein werden. Erneut auf die Fußballmannschaft als Buchstaben von A bis K Bezug nehmend, spielt es keine Rolle, ob A und dann B oder B und dann Ason als Stürmer in den jeweiligen Reihenfolgen ausgewählt werden, nur dass sie gewählt werden. Die mögliche Anzahl von Arrangements für alle Personen n ist einfach n! , wie im Abschnitt „Permutationen“ beschrieben. Um die Anzahl der Kombinationen zu bestimmen, müssen die Redundanzen aus der Gesamtzahl der Permutationen (110 aus dem vorherigen Beispiel im Abschnitt „Permutationen“) eliminiert werden, indem die Redundanzen geteilt werden, was in diesem Fall 2 ist. Auch dies liegt daran, dass die Reihenfolge nicht mehr besteht Es kommt darauf an, also muss die Permutationsgleichung um die Anzahl der Möglichkeiten reduziert werden, wie Spieler ausgewählt werden können: A, dann B oder B und dann A, 2 oder 2! Dies erzeugt die verallgemeinerte Gleichung für eine Kombination wie eine Permutation geteilt durch die Anzahl der Redundanzen und ist allgemein als der Binomialkoeffizient bekannt:​

nCr = n! / r! * (n-r)!

11 C 2 =  11! / 2! * (11 – 2)! = 11! / 2! * 9! = 55

Es ist sinnvoll, dass es weniger Optionen für eine Kombination als für eine Permutation gibt, da Redundanzen beseitigt werden. Wiederum für die Neugierigen ist die Gleichung für Kombinationen mit Ersatz unten angegeben:

n C r =  (r + n -1)!/ r! × (n – 1)!